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NATTONAL. ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2234

STATISTICAL EXPLANATION OF SPONTANEOUS FREEZING
OF WATER DROPLETS

By Joseph Levine

SUMMARY

A statistical theory based on the presence of smell crystalli-
zation nmuclei suspended in water 1s developed to explain experimental
results showing that on the average small droplete can be supercooled
to lower temperatures than lerge ones. Small nuclel of erystalliza-
tion are essumed responsible for causing supercooled. weter to freeze

spontanecusly.

The average behavior of supercooled droplets is reproduced on the
basis of probability theory with an assumed distribution of crystalli-
zation nuclei with respect to the temperatures at which the nuclei
cause freezing. The most probable distribution curves of spontaneous
freezing temperatures for water droplets of various sizes within the
size range found in clouds are obtained.

INTRODUCTION

The prolonged operation of unprotected alrcraft in supercocled
clouds has been found to be & hazard. For the icing hazard o be over-
come, the physical conditions under which supercooled clouds exist must
be understood. The physics of supercooling and freezing 1s incompletely
understood, as shown by conflicting opinions expressed in the livera-
ture. The following factors have been described as causes of freezing
in supercooled water samples: (1) introduction of ice orystal; (2) mech-
snical shock, such as vibration, scratching of solid surfaces together
in water sample, and sound waves; (3) length of time water has existed
in supercooled state; (4) impurities; and (5) droplet size.

Investigators seem to agree that an ice crystal introduced into a
sample of supercooled water will cause the water to freeze. Recent
experiments by Dorsey (reference 1) indicate that mechanical shock,

. however, is of little importance in freezing of supercooled water; like-

wise, time apparently is not & factor. From the extensive investigation
of reference 1, it is concluded that small solid particles suspended in
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the water or irregularitles on the conteiner surface cause the super-
cooled water to freeze at & given temperature. These hypothetical par-
ticles are called motes and the temperature at which a sample freezes
without any apparent—external stimull is called the spontancous freezing
temperature. The spontanecus freezlng temperature was found in most
cages o be a characteristic of each sample, Wwhich led to the mote-
hypothesis. ' o

The observations described in reference 1 havé been substantiated
somewhat in reference 2 in which a statlstical investigation of water-
droplet slze as a facotor in determining the spontaneocus freezing tem-
peratures of the droplets is presented. By observation of a large number
of droplets, the following results were obtained: (1) The frequency-
distribution curve with respect to spontancous freezing temperature of a
given droplet size was found to have a marked pesk or mode; and (2) the
average sponbteneous freezing temperature of each size group decreased
with decreasing droplet size,

In reference 3, the conclusions are mede from cbservation of a
number of droplets that the sponteneous freezing temperature of droplets
from 400 microns down to approximately 50 microns rapidly decreased with

size and that droplets larger than 400 miorons hasd a practically constant-

freezing temperature. The results of reference 3 are gualitatively
verified in reference 2 but only to the extent that the average freezing
temperature for a given size was found to be a function of the size.

Simlilar results of a qualitative nature have been obtained with
substances other then water. In reference 4, the possible degree of
supercooling in sulphur droplets was found to increase with deoreasing
droplet dlameter. In addition, it was found more difficult to super-
cool sulphur droplets on a metal surface, such as brass or aluminum,
than on a glass surface. The effect of droplet size on spontaneous
freezling temperature wes agcribed to the fact that smaller droplets are
less susceptible to external influences than larger droplets. The sur-
face was thought to have an influence om the crystallizing forces within
the supercooled droplet. Substances such as gold, platinum, rhodium,
mercury, and other metals have been supercooled to a greater extent in
the form of small particles than in bulk (reference 5). The effect of
droplet size on spontaneous freezing tempersture is ascribed in refer-
ence 5 to the presence of small particles of impurity in the liquid.
When the ligquid is broken up into small droplets the forelgn particles
are lsolated in a few drops allowing the remainder to supercool to the

temperature at which molecules of the ligquid .combine to form crystals
without the aid of motes. -
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The hypothesis of reference 5 combined with the mote concept of
reference 1 indicates a way of explaining the statistical results pre-
gented in reference 2. A statistical theory that accounts for the two
conclusions of reference 2 on the basis of motes or any other agent
causing nuclel of crystal growbth to form was developed atbt the NACA Iewls
leboratory and is presented herein.

THEORY

An agsumption is made that & large nuwmber of motes are present in
liquid water. Also, each mote is assumed to be associated with a defi-
nite spontaneous freezing temperature. The freezing temperature of a
water semple 1s governed by the mote in the sample that is associated
with the highest freezing temperature.

In the experiment reported in reference 2, water was condensed
from the atmosphere in the form of frost on a polished metal surface
by lowering its temperasture to approximately -35° C. The frost was sub-
sequently melted and droplets formed on the surface. Repeated applica-
tlon of this procedure made a large number of droplets of various sizes
avallable for determining spontaneous freezing btemperatures. Because
the water condensed from the atmosphere was & very small fraction of
the total amount of water aveilable in the form of vapor, the process
was practically the same as drawing small samples of volume AV from
a large reservolr of liquid water of volume V. Because motes of all
kinds are assumed ‘o be present everywhere, 1t is reasonable to con-
sider them to be present in the same relative proportions in the hypo-
thetical volume of liquld water V.

The problem to be solved 1s the determination of the most probable
frequency-distribution curve of spontaneous freezing temperatures sub-
Ject to the following conditlons: .

(l) There are NO, Nl, Nz’ NS, a e @ NT, * o o mO'beB Of kinﬂ.ﬂ

0, 4, 2,3 « « Ty « . «5 respectively, present in the volume V,
where T 1is the gbsolute value of the temperature in °C at which
the mote of kind T ocauses water to freeze.

(2) The swall volumes that are drawn from V are of volume AV,
and the total number of volumes AV obtalnable from V is V/AV =

(3) The number of draws in each set of draws from V 1is s0 small
that p  1s practicelly unchanged while a get is being drawn.
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Firat the motes of kind T are considered. There are NT motes

available for distribution among the p small volumes AV, intc which V
may be divided. The total number of ways of distributing Ky obJects

among H cells is uNT. Bach way of distributing Np objects may be

celled a complexion. Next, regarding the group of all possible com-
N

plexlions, there are up cells in each complexion and therefore g o+l

cells in all the complexions. The probability of drawing & smell volume

in one draw with no motes of kind T in it is mg+1’ where Q 1s the

B
nunmber of cells that among the uNT+l cells in all the posslble complex-
ions contain no motes. The probablility of drawing a small volume contain-

ing one or more motes 1s 1 - —ﬁ%ﬁ

I

A simple example should serve to make the foregoing logic olesrer.
Two motes are supposed to exist in & volume of water V. From V a

volume AV = %V is to be drawn. The probabilities that In a single
draw one or more motes will be in the half volume drawn or that no motes
will be oonbalned in 1t are to be determined. For solution of the prob-
lem, the volume V may be schematlcally represented by two squares of
equal areea gide by side. Thus, if the motes are numbered 1 and 2

for identification, the complexions may be pictured as follows:

2 11 .2 1 | _11,2]

The number of posslble complexions is pNT

= 2% = 4 and the total mumber

of wvolumes or cells in all the complexions i1s pNT+l = 29 = 8. The mum~
ber of-cells contelning no nmotes is two and the number contalning one or
more motes is slx. The probablllity of drawing a cell with no motes In it

Q 3
Nptl = % °
U T

is therefore ‘and with one or more motes in it, 1 -

-1
T =
W

In the preceding example & particular case has been evaluated.
General expressions for the provabilities must now be obtained in terms
of ,u and Np. As in the previous exsmple, cells are lined up slde by
side numbered from 1 to p. In a glven complexion there are Ny 3,

NT.:Z’ e « o Np, motes in the cells 1, 2, . . . M, respectively, where
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the second subscript is the cell number and Ny 4 1s the number of motes
in the 1%B cell:

1 2 3 4 5

i )
Y e N O 7

The total nmumber of motes causing freezing at & temperature of -TC C is

NT = NT,l +NT,2 + e e o +NT,}-I.

N
The total fumber of complexions having Np ; equal to O is (u-1) T,
bedause Np objects are restricted to diséribution among P-1 cells

N
by the condition N, .=0. Likewlse, there are (p-1) T complexions

T,1
subJject to each of the conditions NT’2=O, N NT,1=O, R NT,M=O,

N
respectively. Thus, there are altogether u(u-1) T cells among the
N, : Co Nl
u T complexions that contain no motes. But there is a total of n T '
cells in all the possible complexions. ﬁrhe probability of drawing & cell

T
with no motes in it is therefore (Ei% and the probability of drawing
2 : . '

one with one or more motes in it is 1 -~ (Eii? .

In order to complete the solution of the problem with all kinds of
mote present, the probability P(T,p) of drawing a cell with one or more
motes causing freezing at a given temperature and none causing freezing
at a higher temperature must be found. The probability of drawing a
cell that would freeze &t a temperature of -I° C 1s equal to the product
of the probability of drawing a cell with no particles of kinds’

0, 1, . . . T=-1 and the probabllity of drawing a cell with one or more
particles of kind T, that is,

" N0+N1+N2+ « o o + NT-l _ NT
P(T,u) = (&u—> | 1 ’(FT) (1)

The moé% probable frequency-distribution curve of spontaneous freezing
temperature for a given value of p 1is given by equation (1).
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Because the quantity u = V/AV contains both AV and V, the
question arises &s to the possible dependence of P(T,u) on V as well
as AV. It can be. shown that for AV/V smell enough so that terms of
the second or higher order may be neglected, the functlion P(T,u) is
independent of V. Samples of volume AV are drawn from two large
volumes V and V' such that AV/V and AV/V' are very small. The
mote densities (numbers per unit volume) of various kinds are the same
in both volumes, namely pg5, P71, P2y + « « Ppe. The corresponding expres-
sions for P(T,u) are

( AV)(po+pl+pz+ e oo+ Pp)V ( AV)pTv
P={1-2- 1-(1 -8
L
angd
c. . v K
o e, (pgtoq+Po+ + Ppop) e AV)DT_\
- ¥y Y B

With only the firet two terms In the binominsl expansion of

. (po+pl+p2+-, . .+ pT)V v oV
1 - ¥ and <l - , 1t is found that

P=2p

which proves P(T,u) to be independent of the choice of V provided
AV/V is small enough. Even the higher-order terms are practically
independent of V if the exponents are large compared to 1. (See the
appendix.) _ _ .

With the expression for P(T,u) Fformulated in equation (1), a mote-
density function of freezing temperature mst be found such that the
resulting probability function agrees at least 1n its general character-
istice wlth the distribution curves presented in reference 2. The

(T+l)th term of the geometric progression

&, ar, ar, , . . 8xl, . ..

where a 1s the number of motes in the volume V ceusing freezing at
0° C and r is an arbitrary constant, was found to be a sultable mote
frequency-distribution function. Thus the sum of all motes causing
freezing between 0° C and “T° C in VvV is
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T
T+1
ﬁ‘ = T _ g (=1 :
‘NT—Zar —a(r-l >
0 o

The following form of eguation (1) is obtained by substitubtion of
the foregoing expression:

T

B(T,u) = (“—1>a< r') 1 - (—“;—)aﬂ (2)

1

because

N0+N1+N2+N3+ « o o +NT_1 = a< I‘-l)

The nature of equation (2) is evident in figure 1 where curves corres-
ponding to particulsr wvalues of p _and pg end various velues of r

are plotted. The probability curves all bave a maximim and are some-
what unsymmetrical. Furthermore, as r increases the maximm value

of P increases and the peak of the curve becomes narrower. The curves
of figure 1l are comparsble in form to the freguency-distribution curves
of reference 2. : .

In order to fit the experimental average fireezing temperature-
droplet size curve with the theoretical curve, the mode (or ‘maximum) of
P(T,u) 1s found by taking the derivative dP(T,n)/dT and solving the
equatlion ' : o '

ggigiﬂl = 0

3T =
for T. The mode or the maximum of the probability curve, which is

almost symmetrical, 1s close enough to the average so that they may be
considered equal (table I).

By performing the foregoing operations, the following equation for
the mode Ty as a funotion of u, &, and r is obtained:

log (log r) - log (log ﬁ%i) - log a

Iy = log r ' (3)
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Equation (3) is now reduced to a simple approximate form. Because V
1s much larger then AV, second- or higher-order terms in AV/V are
neglected with the result that

B 1 g AV
u-l'l_ﬂr.‘l"'v , (4)
v
and
log - = log (1 + AY) = 0.4343 AV (s)
u=1 v v

In the experimental curve of reference 2, Ty 1s plotted as a function

of the diameter D of & hemispherlical drop of volume AV 8o that for
comperison of theory with experiment equation (4) becomes

po_ L
l.l—l l - ﬂDS
izv
or
b o xD>
log ke 0.4343 o7 (8)

a

Furthermore, the mote-density function is pp = 7 rI, and the mote-

density constent is Py = 7 . Thus, by substitution of equatiod (6) in
equation (3) : ' T '“

8.78
log (log r) - 3 log D + log -?i;_

M log r (7)

is obtained. As a result of the aessumed mote-density functlon, Ty is

therefore to the first order of approximetion a linear function of log D.
The linear relation between Ty &nd log D is a basic one that can readily

be compared with the experimental data of reference 2.
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The slope of the linear equation (7) is

TemTiw 3 (8)
log Dy - log Dy log r : :

where the subscripts 1 and 2 indicate two distinct values of Ty corres-
ponding to two droplet-slizes D3 and Dz, respectively. The constant ' pp
is found from eéquation (7), after setting Ty = O, to be .

_8.78 log r
Do

where Dg 1s the value of D when Ty = O. TFrom equation (8), the slope
of equation (7) is apparently a function of r alone, end pg according
to equation (9) determines the intercept. Equations (8) and (9) will be
subsequently useful in evaluating the constents xr and pg from the
slope and the intercept of the experimental averege temperature-log D
curve. Then with the constante pp and r known, the theoretical

probability curves may be computed from equation (2) and compared with
the experimentel frequency-distribution curves of reference 2,

In addition to equations (8) and (9) defining the mode and the inter-
cept, an approximate transformation equation is derived in the appendix.
With this transformation, & probability curve for one set of values of
the parameters pp and AV can be transformed simply to a curve corres-

ponding to another set of values. If r 1s kept constant and it is
desired to transform from a distribution curve for & volume AVy and
mote-density constant pg ; To another for AVZ and. og 2, then for a
glven value of the probabllity P +the value of the freezing temperature
To corresponding to AVz and. Po,2 1is related to T; corresponding

to AV; and po’l' by

_log (po)- lAVl / po) 2AV2)

10
log » (10)

To = T7 +

This transformation is possible, because the family of curves correspond-
ing to all values of AV and pg are identical in size and shape but
are displaced in the T coordinste. (See the appendix.)



10 . — NACA TN 2234

A method of transformatlon from a curve for ry to another for rgz,
keeping pg and AV constant, is unavailable, but & set of curves
for various values of r is glven In figure 1 from which curves for
othe: values of AV and pg may be computed using the precedlng trans-

formetions.

RESULTS AND DISCUSSION

For comparison of the theory of this report with the experimental
results of reference 2, the data of reference 2 for the average freezing
temperature-size curve are replotted on semilog paper, and an irregular
curve that can be-fitted reasonably well with a straight line 1s obtained
(fig. 2). This result agrees with the linear relation between Ty and
log D indicated by equation (7). The slope of the straight line, as
dreyn in figure 2, is -7.21 and the value of Dy 1is 24 (cm). From the
slope, the value r i1s found by equation (8) to be 2.60 and, from the
intercept - Do and equation (9), pg has the value 2.64x10-4 (cm-3).

The linear equatlion that best its the data of reference 2 is therefore

Ty = 9.95-7.21 log D

With the constents 'r and P, now known, it is possible to com-

pute the probabllity curves for vaerlious droplet sizes. A comparison
between these curves and the corresponding experlmental frequency-
distribution curves of reference 2 ie given in figure 3 where histograms
of the experimental data are reduced to the probability scale. Fig-
ures 3(b) to 3(d) represent the results obtained for the droplet sizes
with the grestest amount of experimental data, and figures 3(a) and 3(e)
represent the results for, the extremes of the size range investigated
where the data were limited. In the computation of the probability
curves of figure 3, a convenlent value of V = 105_(cm5) was assuned.
The value of V does not influence the curves if 1t is large compared
with AV.

The agreement between the theoretical and experimental curves in
figure 3 is gualitatively very good, but the following differences in
detall exist. The modes of the theoretical curves differ from those of
the experimental curves corresponding to the deviation of experimental
points from the straight line drawn through them in figure 2. The '
experimental probabllity curves are brosder and have less pronounced
peaks than the theoretical curves. The standard deviations (root mean
sguaeres of the deviations from the mean freezing temperature) of the
theoretical curves sre constant and equal to 1.38° C, but the standerd
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deviations of the experimentel curves are between 2 and 4 times as great
and are roughly constant in the size range below 100 microns (fig. 4).
Above 100 microns there is a sharp Increase in the standard deviation of
the experimental date to a higher approximetely constant value of 3.8.

The foregoing difference between the experimentel and theoretical
curves cannot be ascribed to the fact that the experimental data are
grouped into narrow droplet-size ranges to provide the freezing-
temperature distribution curves for a glven average droplet size. A
composite theoretlcal curve formed by combining theoretical curves from
the middie and the two extremes of the experimental-size group differed
very little from the unmodified theoretical curve, as shown in fig-
ure 3(c).

Better agreement between theory and experiment is obbained if
several different mote-density functions sre postulated and the corres-
ponding theoretical curves combined.. This procedure may be Justified,
because the experimental data were taken on seversl days distributed
over & periocd of three months. Data taken each day covered almost the
entire range of droplet sizes Investigated. If impurities were the
active agent, the mote-density function could change from day to day
during that time.  Thus, the combination of date taken at different
times could easily broaden the experimental dlstribution curves es com-
pared to the theoretical curves. Changes in r and pg could modify

the slope and the intercept, reespectively, of the Ty ~ log D curve
(fig. 2). '

The modes of the theoreticael distribution curves may be shifted
without changing the slope of the Ty-log D curve by varying the
constant pgy. The weighted combination of several curves corresponding
to values of pg between 105 and 103 (cm™3) (see table IT) results
in theoretical curves that it the experimental curves much better than
the unmodified theory, as shown in figure 3. The modified theoretical
curves, however, have a consbtant standerd deviation equal to 2,120 C,
which still does not agree with the standard deviations of the experi-
mental curves, as shown in figure 4. Better asgreement might have been
obtalned by varying the values of r as well as of pg; but the
additional work involved in varylng r was not considered worthwhile,
because the variation of pg was only postulated to demonstrate the
pleusibility of the hypothesis concerning the behavior of the experi-
mental stendard deviations. The good agreement obtained between theory
and experiment indlcates that variation of the mote-density funchtion

among several groups of cambined data can account for the discrepancy
between theory and experiment.
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Deviations from the most probable curves may by chance occur in the
observed distribution curves, but deviations of a given magnitude become
less probable-as the number of observations increases. This principle
is illustrated by the greater regularity of distribution curves based on
a large number of observed droplets as compared .with those based on a small
number of droplets. For example, the curves in figures 3(a) and 3(e)
for which 39 and 35 droplets, respectively, were observed are-guite
lrregular as compared with the curve in figure 3(c), for which 692 drop-
lets were observed. : ’ B

CONCLUDING REMARKS

In the derivation of the foregoing statistical theory, emphasis has
been placed on the mote hypothesis of Dorsey, but the theory is also
applicable to homogeneous nucleation as described by Volmer (reference 6).
According to reference 6, the random small-scale fluctuations in an
impurity-free supercooled liguid may cause crystal nuclei to form, result-
ing in crystal growth from the mother liguid. The presence of motes in’
the liquld would mask the homogeneous mucleation. If 1t were possible
to remove all foreign nuclei, then the mote distribution function Ny

would merely be renamed the homogenecus nucleus digtribution function -
and the logic of the theory in this report would apply as in the case
of the motes except that Np would now be a funétion increasing with .
time. Thus, & container of liquid kept at a constant temperature of
supercooling should freeze after a period of time. But the experience
that Dorsey (reference 1) had in mailntaining three test tubes at a tem-
perature between ~8.0° and -10.3° C for 312 days might seem to invalidate
the homogeneous-nucleation theory. The spparent inconsistency that
existe between the results of reference 1 and those expected from the
homogeneous-nuoleation theory may possibly be resolved by the following
logic. The temperature range in which the experiment of reference 1

wag performed may be one of low nucleus-formation probability even over

a period of 312 days. But if the probability of mucleus formation
increases very rapldly at some temperature much lower than ~10° G, the
most probable length of tilme that a glven water sample can remain at a
low constent temperature of supercooling may be sufficiently reduced to
meke maintenance of the water sample in the supercocled state for a very
long time practically impossible.

If the spontaneous freezing temperatures of droplets are princi-
pally determined by the presence of motes, the results of this report
can be extended to supercooled clouds, because there should be no
essentlal difference between the droplets supported on a surface and the
droplets suspended in the atmosphere except for posgible variations in
the mote distribution curves as a functilon of time and place., The
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results of this report indicate that no well-defined temperature exists
at which supercooled cloud droplets are transformed into ice particles.
As the temperature ls decreased in a given cloud, more and more droplets
will tend to freeze untll a point 1s reached at which very few droplets
are left unfrozen. For example, in a cloud of uniform droplet size
with hemispherical diameter D of 34.5 microns or an actual spherical
droplet diameter of 27.4 mlcrons which is fairly common in clouds, prac-
ticaelly all the droplets would be frozen at a temperature cf =340 C.

On the other hand, practically all the droplets in the cloud would
remain unfrozen down to & temperature of -18° C and only about bhalf
would be frozen at a temperature of -28° C. In clouds with a droplet
gize of S5 microns or greater, therefore, very few supercooled droplets
exist at temperatures lower than -35° C and the existence of an icing
cloud et such low temperatures is probably an unusual occurrence.

The relative proportions of frozen and supercooled droplets in a
cloud are importent in determining the stability of the cloud. A cloud
is considered to be stable 1f factors causing rapid dissipation of the
cloud are absent. One of the factors that may cause a supercooled
cloud to become unstable is the existence of ice particles in the cloud.
Ice particles in a supercooled cloud have & lower vapor pressure than
the surrounding supercooled drops., As a result of the vapor-pressure
gradient exlsting between the liquid droplets and ice particles, water
tends to evaporate from the droplets and condense on the lce particles.
Ths, 1f lce particles are present in sufficient number distributed
evenly throughout the cloud, the ice particles will grow at the expense
of the supercooled. drops until they fall out of the cloud in thHe form
of precipitation (reference 7). If too few ice particles appear in a
supercooled cloud, they will grow and fall out of the cloud leaving it
practically intact. On the other hand, if too meny ice particles appear,
the ocloud i1s merely transformed to an ice-particle cloud. The presence
of lce crystals in supercooled clouds is considered to be the principal
factor initlating precipitation.

Determination of whether the statistics of freezing are affected
by change of environment requires further investigetion. For exesmple,
if impurities are the cause of freezing in supercooled water, then the
average freezing temperature of a given droplet size should be depressed
by mainteining as high a degree of cleanliness as possible. In addition,
if cleanliness is found to have the anticipated influence, the effect
of adding finely divided meterials of kpown constitubion to water can be
investigated. In the experiments on supercooled water that have been
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conducted up to the present time, the water has always been iIn contact
with a container or support. In order to attaln conditlons that approach
those in clouds, a method of investigating the freezing-iemperature
gtatistlics of unsupported droplets must be found.

Lewls Flight Propulsion Laboratory,
National Advisory Committee for Aeronsutlcs,
Cleveland, Ohio, May 3, 1950.
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AFPENDIX - DERIVATION OF TRANSFORMATION EQUATIONS

Equation (10) for transformstion of a probability curve
corresponding to one set of values of the parameters AV and pg to

another set of values is derived from egquation (2) written in the form
[ 1 B —

Equation (12) must first be expanded in a series to obtain an approxi-
mate expression, which is used to show the dependence of P on AV and

) LTy
The AV)Po\ 71/ V 1 . AY|Po
Poe members of eguation (12), (1 - e and - s

are vwritten in a bilnomial expansion as follows:

F’o
P(T,AV,00,T) = (1 - —) (12)

-\ oV 1 oV (av-1) AVZ nv(nv-l)(nv-z) Av3 .
- -_v_- = -~-nAV + 2| &) 3 % e & »
v ) . v

where n represents po(zf‘:i) or pgrT. Because V is very large,

nV in general is so large that nV~l, nV-2, . . . are practically equal
toc nV so that the binomial expansion may be written as

nv . 2 3 3
<-%’-> =1-mv+%av2--‘%-Av oo e (13)

By substitution in equetion (12) of series in the form of equation (13),

2( 1) 2
P(T,AV,00,7) = poxTAY + p_OL.L RPN, (ri:::D 72

2

P_Qsj(zm> 5 Pos(rT) ( r_l) av3 +.’°£3f.<f:_)z &3 ... (14)

r- 2 r=-1
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is obtained. When T 1is close 1o zero, I ig small and only the first
term of the series in equation (14) need be used. As T increases, the

terms of higher order must be considered and rI-1 becomes more nearly

equal to T, because r 18 greater than 1. Equation (14) may there-
fore be rewritten as - :

| (3l
8] 2,
P(T,AV,p0,r) & pgrlav - 23 av2 - 20 AVE
oo () a0 () s, 200 ()
=2 aVE+ —— avd 4 (15)

6 (z-1)3 (r-1)2

The first step in the derivation of equation (10) is the proof
that Py, the mode value of P corresponding to Ty for one set

of values of the parameters pg and AV, is equal to PM correapornding
to another set of values. Two sets of values of Po and AV are

indicated by adding the subscripts 1 and 2, and the corresponding
variables are gimilarly indicated. With eguation (3) in the form

log (log r) = log poAV - log 0.4343
Iy = log v

(18)

with velues AVy and AVp of the parameter AV, with values Po,1 and
Pg,2 ©of the parameter Pgp» and with r msintained constant, the equation

T1,m Ta,m
r ? po 1 AVl = X ? p.o 2 AVZ (17)

is obtained by subtraotion of the equation for Tz M from that for Tl M
The mode probabilities by eqguation (15) are

1,M 2 r-1

Ty M) 2 g Ty MZZ Y
~ T r 2 - r 2 v L] L] L ]
Py SELM oy o &V, - ("o,l AVl) (%,1 A 1)

1419
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and
~ T2,M (r Z’M) (r 25M> 2
Pom =T 0 pg g AV - Po,2 AV2)2 - Y0 Po,2 AVZ2)%. . .

Therefore, by eguation (17), the separate terms in the series for Pl,M
and Pz,u are equal and

Piu= Fou

Because for a given value of r the mode probability By 1is the
same for all velues of po and AV, the probability function P ranges

from zero to By for all values of Po and AV. To the value of the
probability Py corresponding to the values Po,1s AV,y, and Ty, ‘there

are values pg,z, AV2, and Tp such that
Py =P

From equetion (15) series expansions for P, and Py are obtained and
substituted In this equation so that
2

T T -
r'lpg AV -2 0y 5 AVp F| M5 (pp,1 aV1)E - 5 (pg,z &V2)2| +
( T.)2 T, 2
1'3) 2 (r 2
=7 (Po,1 AV1)® - 2— (pg 2 AVR)%| . . . (18)

For values of T close to zero, the probabilities P; end P, are given

to a good epproximetion by the first term of the series in equation (15),
and the right-hand member of equation (18) is therefore negligible. As T
increases, the terms of second and higher order in equation (15) become
appreciable, and the individual terms on the right-hand side of equa.-
tion (18) are no longer negligible. But as T approaches Ty, the

bracketed differgnces on the right-hand side of equation (18) approach
zero according t6 eguation (17). The differences on. the right-hand side

”
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" of equation (18) are therefore negligible in the range of T from O
to a value somewhat greater than TM " Therefore, because P becomes

negligible for T Just—=a little greater than TM (see fig. 3), the
equetlion )

rip AV, = rsz AV g (19)
0,11 0,2" 2

is & good approximation in the range of T where P is of-appreciable
magnitude. If the log of equation (19) is teken, this equation mey be
rewritten as & transformation equation, which ylelds the displacement
of a probabllity curve ‘n the T coordinate as

e o . log (og 1 AVy/pg 5 AV,)
271 7. ... _logr

(10)

Calculations of P for various values of Po and AV from equa-
tion (2) confirm the epproximate validity of equation (10). '
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TABLE I - COMPARISON OF MODES AND AVERAGES OF

FREQUENCY -DISTRTBUTION CURVES

Dieameter |Mode |Average|(Mode)-(average)
of hemi+ | (°c) | (°c) (°c)
spherical
drops
(microns)
lExperimental: values
805 -1l86.6| -17.4 0.8
18l -23.3| -24.2 .9
69 -25.5| -25.2 -.3
34.5 ° |-24.4| -26.2 1.8
8.75 -32.2} =-32.1 -.1
Theoretical values
1564 - -15.8] -15.2 -0.6
156.4 -23.01 -22.8 -.4
72.8 ~25.5( -24.9 ~-.6
33.70 -27.7] -27.3 -.4
7.28 -32.7| =-32.1 -.6

lData from reference 2.

TABLE IT - VALUES OF Py AND CORRESPONDING WEIGHTS

| USED IN MAKING COMPOSITE CURVE

o

(cm™3)

Weight

\W

2.84 X

1.0 x 1072

1.05 X 107%
5.7 x 107°
3.7 X 1070
2.6 X 10°

107%

5

H ook

19



Probability of freezing, P
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Probebility of freezing, P
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Figure 3. = Comparison of theoretical and experimentél probabllity curves.
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Probabllity of freezing, P
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